organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S. Sathiya Moorthi,^a K. Chinnakali,^b* S. Nanjundan,^c R. Radhika,^c Hoong-Kun Fun^d* and Xiao-Lan Yu^e

^aDepartment of Physics, Sri Muthukumaran Institute of Technology, Chikkarayapuram, Chennai 600 069, India, ^bDepartment of Physics, Anna University, Chennai 600 025, India, ^cDepartment of Chemistry, Anna University, Chennai 600 025, India, ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^eSchool of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

Correspondence e-mail: kali@annauniv.edu, hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.044 wR factor = 0.126 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

1-(4-Hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one

The title molecule, $C_{16}H_{14}O_3$, is slightly distorted from planarity, the dihedral angle between the two benzene rings being 9.51 (7)°. The configuration of the keto group with respect to the olefinic double bond is *s*-*cis*. O-H···O hydrogen bonds, and C-H···O and π - π interactions, link the molecules to form a three-dimensional network. The C-H···O interactions form rings of graph-set motifs *S*(5), $R_2^1(6)$ and $R_2^1(7)$.

Comment

Chalcones and their heterocyclic analogues exhibit antiinflammatory, antitumour (Shibata, 1994; Xia *et al.*, 2000), antibacterial, antifungal (Gafner *et al.*, 1996; Popova *et al.*, 2001), antitubercular, antiviral, antiprotozoal and gastroprotective (Opletalova & Sedivy, 1999) activities. The different bioactivities of a variety of chalcones have been reviewed by Dimmock *et al.* (1999). Hydroxychalcones can be readily reacted with acryloyl and methacryloyl chloride to obtain acrylate and methacrylate monomers, which are useful for the preparation of photo-cross-linkable polymers (Subramanian *et al.*, 2001; Balaji & Nanjundan, 2002). The structure determination of the title compound, (I), was undertaken as part of our study of chalcones.

In the title molecule, the keto group is in the *s*-*cis* configuration with respect to the olefinic double bond $[C7-C8-C9-O1 = -5.4 (2)^\circ$; Fig. 1]. The methoxy group is coplanar with the attached ring, the C16-O2-C3-C4 torsion angle being -4.7 (2)°. The molecule is slightly twisted, the dihedral angle between the two aromatic rings being 9.51 (7)°. The bond lengths and angles are comparable with those reported for related structures (Raj *et al.*, 1996; Shanmuga Sundara Raj *et al.*, 1997; Jeyabharathi *et al.*, 2002; Ravishankar *et al.*, 2003; Thamarai Selvi *et al.*, 2003).

The short H5···H8 (2.15 Å) and H8···H11 (2.00 Å) contacts result in the widening of the C6–C7–C8 [126.11 (12)°] and C9–C10–C11 [122.68 (11)°] angles from 120°. The narrowing of the O2–C3–C2 [116.13 (11)°] angle

Received 10 January 2005 Accepted 18 January 2005 Online 29 January 2005

Figure 1

A view of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

and the resultant widening of the O2-C3-C4 [124.08 (12)°] angle from normal values are a result of the close H4···H16B (2.33 Å) and H4···H16C (2.30 Å) contacts. Similar features have been reported previously for related structures (Ravishankar et al., 2003; Thamarai Selvi et al., 2003).

In the molecular structure of (I), each of the C7-H7···O1 and C15-H15···O1 interactions generates an S(5) ring motif (Etter et al., 1990; Bernstein et al., 1995).

In the crystal structure of (I), the keto and hydroxy O atoms are involved in intermolecular O-H···O hydrogen bonds. The crystal structure is further stabilized by $C-H \cdots O$ interactions (Table 1), the geometries of which agree with those reported by Jeffrey (1997) and Desiraju & Steiner (1999). The $O3-H3\cdots O1^{i}$ and $C14-H14\cdots O1^{i}$ interactions together form a pair of bifurcated acceptor bonds which generate a ring of graph-set motif $R_2^1(6)$ (Etter *et al.*, 1990). Also, the C4-H4...O3ⁱⁱⁱ and C16-H16C...O3ⁱⁱⁱ interactions constitute a pair of bifurcated acceptor bonds generating a ring of graphset motif $R_2^1(7)$ (Fig. 2). An $R_2^1(6)$ motif is formed by the C1- $H1 \cdots O2^{ii}$ and $C7 - H7 \cdots O2^{ii}$ interactions. All symmetry codes are given in Table 1.

In addition to the above interactions, the crystal packing is further stabilized by a face-to-face π - π interaction between the C10–C15 benzene ring at (x, y, z) and the inversion-related ring at (-x, 1 - y, -z). These rings are stacked 3.378 (1) Å apart, with a centroid $\cdot \cdot \cdot$ centroid distance of 3.692 (1) Å.

Experimental

The title compound was prepared by the Claisen-Schmidt condensation of equimolar quantities of 4-hydroxyacetophenone (4.08 g, 0.03 mol) and 4-methoxybenzaldehyde (4.03 g, 0.03 mol) in aqueous ethanol, in the presence of sodium hydroxide. The product was recrystallized from ethanol by slow evaporation.

Crystal data

Mo Ka radiation Cell parameters from 6162 reflections $\theta = 4.9 - 54.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless $0.59 \times 0.41 \times 0.28 \text{ mm}$

Figure 2

Part of the crystal packing of (I), showing O-H···O and C-H···O hydrogen bonds as dashed lines. Only the H atoms involved in the interactions are labelled. Other H atoms have been omitted. Symmetry codes are given in Table 1. The π - π interaction is also shown as a dashed line.

Data collection

Siemens SMART CCD area-	2513 reflections with $I > 2\sigma(I)$
detector diffractometer	$R_{\rm int} = 0.023$
ω scans	$\theta_{\rm max} = 28.3^{\circ}$
Absorption correction: none	$h = -16 \rightarrow 17$
15 000 measured reflections	$k = -10 \rightarrow 15$
3015 independent reflections	$l = -21 \rightarrow 22$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0671P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.4382P]

	<i>n</i> = 1/[0
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.4
$wR(F^2) = 0.126$	where
S = 1.07	$(\Delta/\sigma)_{\rm max}$
3015 reflections	$\Delta \rho_{\text{max}} =$
175 parameters	$\Delta \rho_{\min} =$
H-atom parameters constrained	Extinction
	(Sheld

4382P $P = (F_o^2 + 2F_c^2)/3$ < 0.001 -3 0.19 e Å -0.22 e Å⁻³ on correction: SHELXTL Sheldrick, 1997) Extinction coefficient: 0.0097 (13)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3-H3···O1 ⁱ	0.82	1.88	2.688 (2)	169
$C1 - H1 \cdot \cdot \cdot O2^{ii}$	0.93	2.86	3.674 (2)	147
C4-H4···O3 ⁱⁱⁱ	0.93	2.72	3.393 (2)	130
$C7-H7\cdots O1^{iv}$	0.93	2.50	2.808 (2)	100
$C7 - H7 \cdot \cdot \cdot O2^{ii}$	0.93	2.53	3.425 (2)	162
$C14-H14\cdots O1^{i}$	0.93	2.93	3.547 (2)	125
$C14-H14\cdots O2^{v}$	0.93	2.63	3.455 (2)	149
$C15-H15\cdots O1^{iv}$	0.93	2.54	2.828 (2)	99
$C15-H15\cdots O3^{vi}$	0.93	2.60	3.490 (2)	162
C16-H16A···O1 ^{vii}	0.96	2.82	3.344 (2)	116
$C16-H16C \cdot \cdot \cdot O3^{iii}$	0.96	2.68	3.548 (2)	151

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) x, y, z; (v) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$; (vi) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (vii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

H atoms were positioned geometrically and refined with a riding model, with O-H = 0.82 Å, C-H = 0.93-0.96 Å and $U_{iso}(H) = 1.2$ or 1.5 times U_{eq} of the carrier atom. The rotational orientations of the methyl and hydroxyl groups were determined by circular difference electron-density syntheses.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

References

Balaji, R. & Nanjundan, S. (2002). J. Appl. Polym. Sci. 86, 1023-1037.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
- Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.
- Etter, M. C., Macdonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.

- Gafner, S., Wolfender, J. L., Mavi, S. & Hostettmann, K. (1996). *Planta Med.* **62**, 67–69.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.
- Jeyabharathi, A., Ponnuswamy, M. N., Nanjundan, S., Fun, H.-K., Chandrapromma, S., Usman, A. & Razak, I. A. (2002). Acta Cryst. C58, o26–o28.
- Opletalova, V. & Sedivy, D. (1999). *Ceska. Slov. Farm.* **48**, 252–255. Popova, M., Bankova, V., Spassov, S., Tsvetkova, I., Naydenski, C., Silva, M. V.
- & Tsartsarova, M. (2001). Z. Naturforsch. Teil C, 56, 593–596. Raj, S. S. S., Ponnuswamy, M. N., Shanmugam, G. & Nanjundan, S. (1996). Acta
- Cryst. C52, 3145–3146. Ravishankar, T., Chinnakali, K., Nanjundan, S., Radhakrishnan, S., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, 0138–0140.
- Shanmuga Sundara Raj, S., Ponnuswamy, M. N., Shanmugam, G. & Nanjundan, S. (1997). Acta Cryst. C53, 917–918.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shibata, S. (1994). Stem Cells, 12, 44-52.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Subramanian, K., Nanjundan, S. & Rami Reddy, A. V. (2001). *Eur. Polym. J.* **37**, 691–698.
- Thamarai Selvi, M., Chinnakali, K., Nanjundan, S., Jone Selvamalar, C. S., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, o1146–o1148.
- Xia, Y., Yang, Z. Y., Xia, P., Bastow, K. F., Nakanishi, Y. & Lee, K. H. (2000). Bioorg. Med. Chem. Lett. 10, 699–701.